본문으로 바로가기 메뉴 바로가기
Loading...

전체메뉴

연구성과

마이크로바이옴의 올바른 해석을 통한 건강한 세상 만들기, 이지놈이 시작합니다.

연구성과

게시물 검색
The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism썸네일
Genomics
Nature Genetics 28 Sep 2020

Cattle pastoralism plays a central role in human livelihood in Africa. However, the genetic history of its success remains unknown. Here, through whole-genome sequence analysis of 172 indigenous African cattle from 16 breeds representative of the main cattle groups, we identify a major taurine × indicine cattle admixture event dated to circa 750–1,050 yr ago, which has shaped the genome of today’s cattle in the Horn of Africa. We identify 16 loci linked to African environmental adaptations across crossbred animals showing an excess of taurine or indicine ancestry. These include immune-, heat-tolerance- and reproduction-related genes. Moreover, we identify one highly divergent locus in African taurine cattle, which is putatively linked to trypanotolerance and present in crossbred cattle living in trypanosomosis-infested areas. Our findings indicate that a combination of past taurine and recent indicine admixture-derived genetic resources is at the root of the present success of African pastoralism.

Abstract +
Complete Genomic Analysis of Enterococcus faecium Heat-Resistant Strain Developed by Two-Step Adaptation Laboratory Evolution Method썸네일
Genomics
Front. Bioeng. Biotechnol. 23 Jul 2020

Stress resistance is an important trait expected of lactic acid bacteria used in food manufacturing. Among the various sources of stress, high temperature is a key factor that interrupts bacterial growth. In this regards, constant efforts are made for the development of heat-resistant strains, but few studies were done accompanying genomic analysis to identify the causal factors of the resistance mechanisms. Furthermore, it is also thought that tolerance to multiple stresses are equally important. Herein, we isolated one Enterococcus faecium strain named BIOPOP-3 and completed a full-length genome sequence. Using this strain, a two-step adaptive laboratory evolution (ALE) method was applied to obtain a heat-resistant strain, BIOPOP-3 ALE. After sequencing the whole genome, we compared the two full-length sequences and identified one non-synonymous variant and four indel variants that could potentially confer heat resistance, which were technically validated by resequencing. We experimentally verified that the evolved strain was significantly enhanced in not only heat resistance but also acid and bile resistance. We demonstrated that the developed heat-resistant strain can be applied in animal feed manufacturing processes. The multi-stress-resistant BIOPOP-3 ALE strain developed in this study and the two-step ALE method are expected to be widely applied in industrial and academic fields. In addition, we expect that the identified variants which occurred specifically in heat-resistant strain will enhance molecular biological understanding and be broadly applied to the biological engineering field.

Abstract +

전체메뉴