본문 바로가기 주메뉴 바로가기

연구실적

HOME  >  주요성과  >  연구실적

Genomic Insights and Its Comparative Analysis with Yersinia enterocolitica Reveals the Potential Virulence Determinants and Further Pathogenicity for Foodborne Outbreaks

Microbiomics
Virus
J. Microbiol. Biotechnol | 28 February 2017
Yersinia enterocolitica is a well-known foodborne pathogen causing gastrointestinal infections worldwide. The strain Y. enterocolitica FORC_002 was isolated from the gill of flatfish (plaice) and its genome was sequenced. The genomic DNA consists of 4,837,317 bp with a GC content of 47.1%, and is predicted to contain 4,221 open reading frames, 81 tRNA genes, and 26 rRNA genes. Interestingly, genomic analysis revealed pathogenesis and host immune evasionassociated genes encoding guanylate cyclase (Yst), invasin (Ail and Inv), outer membrane protein (Yops), autotransporter adhesin A (YadA), RTX-like toxins, and a type III secretion system. In particular, guanylate cyclase is a heat-stable enterotoxin causing Yersinia-associated diarrhea, and RTX-like toxins are responsible for attachment to integrin on the target cell for cytotoxic action. This genome can be used to identify virulence factors that can be applied for the development of novel biomarkers for the rapid detection of this pathogen in foods.

TOP